Proton beam writing a platform technology for high quality three- dimensional metal mold fabrication for nanofluidic applications

نویسندگان

  • J. A. van Kan
  • P. G. Shao
  • Y. H. Wang
  • P. Malar
چکیده

Direct write nanolithographic techniques are powerful techniques to fabricate masters for nano-imprint lithography (NIL). Proton beam writing (PBW) is a relatively new technique which has shown great potential in fabricating three-dimensional (3D) nanostructures in polymer resist material down to the 20 nm level. MeV protons generate secondary electrons and like in many lithographic processes these electrons modify the molecular structure of the resist. The energies of the proton induced secondary electrons are relatively low compared with secondary electrons generated using electron beam writing, therefore proton induced secondary electrons only modify resist material within several nano meters of the proton track. Since protons mainly interact with the substrate electrons the path of the proton beam is very straight, resulting in smooth and well defined resist structures with practically no proximity effects. Further development of current proton beam technology, required to approach sub 10 nm structuring with MeV protons is discussed. To explore the full microand nano-fabricating capabilities of PBW it is important to investigate potential new resist materials. In PBW mass production can be achieved through the fabrication of reliable molds and stamps. The compatibility of MeV proton beams for resist materials and post processing steps like electroplating and resist removal are evaluated. The second focus of this paper is PDMS nanofluidic lab on a chip sorting devices using high quality Ni molds. These molds have been prepared via PBW and Ni electroplating, a release layer on a Ni mold allows fine feature replication down to the 300 nm level with high aspect ratios in PDMS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.

An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This...

متن کامل

Fabrication of micro- and nano-photonic structures in dye-doped polymers and nonlinear optical crystals using high energy proton beam

Proton beam writing (PBW) is a new direct-write technique developed at Centre for Ion Beam Applications, National University of Singapore for creating three-dimensional, high aspect ratio microand nano-structures with straight and smooth sidewalls in resits, polymers, glasses, and other materials. Here we present some results of our initial efforts on the direct writing of photonic structures i...

متن کامل

Resist evaluation for Ni mold fabrication and proton beam writing

In our experiments, we use different photoresists for proton beam writing and mold fabrication. We have fabricated Ni mold with structures down to 500 nm. We first use a fine focused proton beam to expose different photoresists, Polymethyl Methacrylate (PMMA), AR-P 3250 and ma-N 2410. After development and nickel sulfamate electroplating, the structures were faithfully transferred from the phot...

متن کامل

Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...

متن کامل

Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications

The creation of complex three-dimensional (3D) fluidic systems composed of hollow microand nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D microand nanofluidic structures with arbitrary configurations using conventional planar lithographic f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011